Differential Expansion Sensitivity Studies During Steam Turbine Startup

Author:

Topel Monika1,Jöcker Markus2,Paul Sayantan3,Laumert Björn1

Affiliation:

1. Department of Energy Technology, Royal Institute of Technology, Stockholm SE-100 44, Sweden e-mail:

2. Siemens Industrial Turbomachinery AB, Finspång SE-612 83, Sweden e-mail:

3. Siemens Ltd., Gurgaon 122 015, India e-mail:

Abstract

In order to improve the startup flexibility of steam turbines, it becomes relevant to analyze their dynamic thermal behavior. In this work, the relative expansion between rotor and casing was studied during cold-start conditions. This is an important property to monitor during startup given that clearances between rotating and stationary components must be controlled in order to avoid rubbing. The investigation was performed using a turbine thermal simplified model from previous work by the authors. The first step during the investigation was to extend and refine the modeling tool in order to include thermomechanical properties. Then, the range of applicability of the model was validated by a twofold comparison with a higher order finite element (FE) numerical model and measured data of a cold start from an installed turbine. Finally, sensitivity studies were conducted with the aim of identifying the modeling assumptions that have the largest influence in capturing the correct thermal behavior of the turbine. It was found that the assumptions for the bearing oil and intercasing cavity temperatures have a large influence ranging between ±25% from the measured values. In addition, the sensitivity studies also involved increasing the initial temperature of the casing in order to reduce the peak of differential expansion. Improvements of up to 30% were accounted to this measure. The studies performed serve as a base toward further understanding the differential expansion during start and establishing future clearance control strategies during turbine transient operation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. Market Strategy Board White Paper. Grid Integration of Large-Capacity Renewable Energy Sources and Use of Large-Capacity Electrical Energy Storage;IEC,2012

2. Flexibity Increase With Latest Technologies;VGB Power Tech. J.,2012

3. Panek, P., Cerny, V., Kapic, M., and Prchlik, L., 2012, “Thermal Stress Monitoring and Control System for Steam Turbines,” Power Gen Europe Conference 2012.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3