The Role of Lagrangian Strain in the Dynamic Response of a Flexible Connecting Rod

Author:

Chen Jen-San1,Chen Kwin-Lin1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617

Abstract

Previous researches on the dynamic response of a flexible connecting rod can be categorized by the ways the axial load in the rod is being formulated. The axial load may be assumed to be (1) dependent only on time and can be obtained by treating the rod as rigid, (2) related to the transverse displacement by integrating the axial equilibrium equation, and (3) proportional to linear strain. This paper examines the validity of these formulations by first deriving the equations of motion assuming the axial load to be proportional to the Lagrangian strain. In order for the dimensionless displacements to be in the order of O(1), different nondimensionalization schemes have to be adopted for low and high crank speeds. The slenderness ratio of the connecting rod arises naturally as a small parameter with which the order of magnitude of each term in the equations of motion, and the implication of these simplified formulations can be examined. It is found that the formulations in previous researches give satisfactory results only when the crank speed is low. On the other hand when the crank speed is comparable to the first bending natural frequency of the connecting rod, these simplified formulations overestimate considerably the dynamic response because terms of significant order of magnitude are removed inadequately.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Nonlinear Response of a Flexible Connecting Rod;Journal of Mechanical Design;2003-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3