Effect of Welding Mode on Remote Laser Stitch Welding of Zinc-Coated Steel With Different Sheet Thickness Combinations

Author:

Wan Zixuan1,Wang Hui-ping2,Li Jingjing1,Yang Baixuan2,Solomon Joshua2,Carlson Blair E.2

Affiliation:

1. Pennsylvania State University Department of Industrial and Manufacturing Engineering, , University Park, PA 16802

2. General Motors Technical Center , Warren, MI 48092

Abstract

Abstract This paper studied the effects of two welding modes, i.e., keyhole penetration and full penetration, on laser welding of two zinc-coated steel stack-ups of the same total sheet thickness but different sheet thickness combinations. The effects of welding modes on keyhole and spatter behavior were studied. It was found that keyhole penetration welding led to little spatter and mass loss for a thick-gage stack-up of the same top and bottom sheet thickness (two 1.5 mm zinc-coated steel sheets, viz., Stack-up S). This was confirmed by numerically calculated low Zout values which indicate a low potential of spatter due to zinc outgassing insufficiency. For a stack-up of thin top and thick bottom sheet combination (1.1 mm/1.9 mm, viz., Stack-up D), full penetration mode is more preferred generating less spatter than the keyhole penetration mode. This was attributed to an enlarged keyhole size at the faying interface in the full penetration mode and the relatively thinner top sheet (1.1 mm thick) compared to the bottom sheet (1.9 mm thick). It was confirmed by the low average and maximum values of Zout. In summary, to reduce the spatter in laser welding of zinc-coated steel, the keyhole penetration mode welding is preferred for the stack-up with the top and bottom sheets of similar thickness, and the full penetration mode is more suitable for the stack-up having a much thinner top sheet than the bottom sheet.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3