A Combined Wavelet Transform and Recurrent Neural Networks Scheme for Identification of Hydrocarbon Reservoir Systems From Well Testing Signals

Author:

Moghimihanjani Mehrafarin1,Vaferi Behzad2

Affiliation:

1. Department of Petroleum Engineering, Sharif University of Technology, Tehran 79463, Iran

2. Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz 7198774731, Iran

Abstract

AbstractOil and gas are likely the most important sources for producing heat and energy in both domestic and industrial applications. Hydrocarbon reservoirs that contain these fuels are required to be characterized to exploit the maximum amount of their fluids. Well testing analysis is a valuable tool for the characterization of hydrocarbon reservoirs. Handling and analysis of long-term and noise-contaminated well testing signals using the traditional methods is a challenging task. Therefore, in this study, a novel paradigm that combines wavelet transform (WT) and recurrent neural networks (RNN) is proposed for analyzing the long-term well testing signals. The WT not only reduces the dimension of the pressure derivative (PD) signals during feature extraction but it efficiently removes noisy data. The RNN identifies reservoir type and its boundary condition from the extracted features by WT. Results confirmed that the five-level decomposition of the PD signals by the Bior 1.1 filter provides the best features for classification. A two-layer RNN model with nine hidden neurons correctly detects 3202 out of 3298 hydrocarbon reservoir systems. Performance of the proposed approach is checked using smooth, noisy, and real field well testing signals. Moreover, a comparison is done among predictive accuracy of WT-RNN, traditional RNN, conventional multilayer perceptron (MLP) neural networks, and couple WT-MLP approaches. The results confirm that the coupled WT-RNN paradigm is superior to the other considered smart machines.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3