Wave Attenuation by Submerged Oscillating Plates

Author:

Chen Yongbo1,Hayatdavoodi Masoud2,Zhao Binbin1,Ertekin R. Cengiz3

Affiliation:

1. Harbin Engineering University , Harbin, China (Mainland)

2. University of Dundee , Dundee, Angus, United Kingdom

3. University of Hawaii at Manoa , Honolulu, Hawaii, United States

Abstract

Abstract Submerged oscillating plates are used as heaving plates to reduce the motion of floating objects, in wave energy devices to extract the wave energy, and as breakwaters to attenuate the wave field in shallow water. In this study, we consider a horizontal, submerged plate in shallow water that is allowed to oscillate in the vertical direction due to the wave loads. The plate is attached to a linear spring and damper to control the oscillations. The focus of this study is on the transformation of the wave field by the submerged oscillating plate. To estimate the energy attenuation, wave reflection and transmission coefficients are determined from four wave gauges; two placed upwave and two placed downwave of the oscillating plate. The fluid is governed by the nonlinear Level I Green-Naghdi (GN) equations, coupled with the equations of vertical motion of the plate to determine its oscillations. Time series of water surface elevation recorded at gauges upwave and downwave of the plate, and the wave-induced plate oscillations, obtained by the GN model are compared with available laboratory experiments and other data, and very good agreement is observed. Wave reflection and transmission coefficients are then determined for a range of involved parameters, including wave condition (wave height and wave period), initial submergence depth of the plate, plate length, and the spring-damper system. It is found that a single submerged oscillating plate can have remarkable effect on the wave field, and that nonlinearity plays an important role in this wave-structure interaction problem. Discussion is provided on how the wave reflection and transmission vary with the wave condition, plate characteristic, initial submergence depth and spring-damper system.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power production from wave-induced oscillations of a submerged plate;Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3