Updating Virtual Fixtures From Exploration Data in Force-Controlled Model-Based Telemanipulation

Author:

Wang Long1,Chen Zihan2,Chalasani Preetham2,Pile Jason1,Kazanzides Peter2,Taylor Russell H.2,Simaan Nabil1

Affiliation:

1. Vanderbilt University, Nashville, TN

2. Johns Hopkins University, Baltimore, MD

Abstract

This paper proposes an approach for using force-controlled exploration data to update and register an a-priori virtual fixture geometry to a corresponding deformed and displaced physical environment. An approach for safe exploration implementing hybrid motion/force control is presented on the slave robot side. During exploration, the shape and the local surface normals of the environment are estimated and saved in an exploration data set. The geometric data collected during this exploration scan is used to deform and register the a-priori environment model to the exploration data set. The environment registration is achieved using a deformable registration based on the coherent point drift method. The task-description of the high-level assistive telemanipulation law (virtual fixture) is then deformed and registered in the new environment. The new model is updated and used within a model-mediated telemanipulation framework. The approach is experimentally validated using a da-Vinci research kit (DVRK) master interface and a Cartesian stage robot. Experiments demonstrate that the updated virtual fixture and the updated model allow the users to improve their path following performance and to shorten their completion time when the updated path following virtual fixture is applied. The approach presented has direct bearing on a multitude of surgical applications including force-controlled ablation.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3