Physically Based Modeling of Cyclic Plasticity for Highly Oriented Nanotwinned Metals

Author:

Chen Wufan1,Zhou Haofei1,Yang Wei1

Affiliation:

1. Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

Abstract

Abstract Fatigue resistance is crucial for the engineering application of metals. Polycrystalline metals with highly oriented nanotwins have been shown to exhibit a history-independent, stable, and symmetric cyclic response [Pan et al., 2017, Nature 551, pp. 214-217]. However, a constitutive model that incorporates the cyclic deformation mechanism of highly oriented nanotwinned metals is currently lacking. This study aims to develop a physically based model to describe the plastic deformation of highly oriented nanotwinned metals under cyclic loading parallel to the twin boundaries. The theoretical analysis is conducted based on non-uniform distribution of twin boundary spacing measured by experiments. During cyclic plasticity, each twin lamella is discretely regarded as a perfect elastoplastic element with a yielding strength depending on its thickness. The interaction between adjacent nanotwins is not taken into consideration according to the cyclic plasticity mechanism of highly oriented nanotwins. The modeling results are well consistent with the experiments, including the loading-history independence, Masing behavior, and back stress evolution. Moreover, the dissipation energy during cyclic deformation can be evaluated from a thermodynamics perspective, which offers an approach for the prediction of the fatigue life of highly oriented nanotwins. The cyclic plasticity modeling and fatigue life prediction are unified without additional fatigue damage parameters. Overall, our work lays down a physics-informed framework that is critical for the precise prediction of the unique cyclic behaviors of highly oriented nanotwins.

Funder

National Natural Science Foundation of China

Zhejiang University

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3