Correlation of Measured and Computed Radiation Intensity Exiting a Packed Bed

Author:

Jones P. D.1,McLeod D. G.1,Dorai-Raj D. E.1

Affiliation:

1. Mechanical Engineering Department, Auburn University, Auburn, AL

Abstract

The spectral and directional distribution of radiation intensity is measured, using a direct radiometric technique, at the exposed boundary of a packed bed of stainless steel spheres. The purpose of these measurements is to provide an experimental data base of radiation intensity with which to correlate intensity field solutions of the radiative transfer equation in participating media. The bed is considered to be one-dimensional, is optically thick, and has measured constant-temperature boundary conditions. Intensity exiting the bed is numerically simulated using a discrete ordinates solution to the radiative transfer equation, with combined mode radiation-conduction solution of the coupled energy conservation equation. Radiative properties for the bed are computed using the large size parameter correlated scattering theory derived by Kamiuto from the general theory of dependent scattering by Tien and others. The measured intensity results show good agreement with computed results in near-normal directions, though agreement in near-grazing directions is poor. This suggests that either radiative transfer near the boundaries of this medium might not be adequately represented by a continuous form of the radiative transfer equation, or that the properties derived from correlated scattering theory are insufficient. In either case, development of a more detailed radiation model for spherical packed beds appears warranted.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3