An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows

Author:

Qiu Songgang1,Simon Terrence W.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

Results are presented of an experimental study of separation and transition within the flow over the suction surface of a low-pressure turbine airfoil. Detailed velocity profiles, measured in the near-wall region with the hot-wire technique, and surface static pressure distributions are presented. Flow transition is documented using measured intermittency distributions in the attached boundary layer and within the separated shear layer. Cases for Reynolds numbers based on exit velocity and suction surface length of 50,000, 100,000, 200,000, and 300,000 under low Free Stream Turbulence Intensity (FSTT = 0.5%), moderate-FSTI (2.5%), and high-FSTI (10%) are reported. Cases of FSTI = 2.5%, which, due to wakes, are most representative of low-pressure turbine flows, are discussed in detail. Comparisons are made for cases of differing Reynolds numbers and FSTI values. Flow separation, with transition of the shear layer over the separation bubble, is observed for the lower-Re cases. Enhanced transport after flow transition reduces the separation bubble size and eventually accelerates the near-wall flow to attached boundary layer status. Elevated FSTI and increased Re promote earlier transition, smaller separation bubbles, and an increased possibility that the boundary layer will remain attached and transition as such. Models for intermittency distribution, transition onset location, and transition length are assessed.

Publisher

American Society of Mechanical Engineers

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsteady Flows and Component Interaction in Turbomachinery;International Journal of Turbomachinery, Propulsion and Power;2024-04-05

2. LPT Flow Control at AFRL;38th Fluid Dynamics Conference and Exhibit;2008-06-15

3. Aerodynamic Performance of a Very High Lift Low Pressure Turbine Blade With Emphasis on Separation Prediction;Journal of Turbomachinery;2004-07-01

4. Effect of free-stream turbulence on turbine blade heat transfer and pressure coefficients in low Reynolds number flows;International Journal of Heat and Mass Transfer;2004-07

5. Effect of Chord Location on Separation Control with Vortex Generator Jets on Low Pressure Turbine Blades;2nd AIAA Flow Control Conference;2004-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3