Modeling the Performance of a Turbo-Charged Spark Ignition Natural Gas Engine With Cooled Exhaust Gas Recirculation

Author:

Li Hailin1,Karim Ghazi A.2

Affiliation:

1. National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada

2. Department of Mechanical and Manufacturing Engineering, The University of Calgary, Calgary, AB, T2N 1N4, Canada

Abstract

A variety of gaseous fuels and a wide range of cooled exhaust gas recirculation (EGR) can be used in turbo-charged spark ignition (S.I.) gas engines. This makes the experimental investigation of the knocking behavior both unwieldy and uneconomical. Accordingly, it would be attractive to develop suitable effective predictive models that can be used to improve the understanding of the roles of various design and operating parameters and achieve a more optimized turbo-charged engine operation, particularly when EGR is employed. This paper presents the simulated performance of a turbo-charged S.I. natural gas engine when employing partially cooled EGR. A two-zone predictive model developed mainly for naturally aspirated S.I. engine applications of natural gas, described and validated earlier, was extended to consider applications employing turbo-chargers, intake charge after-coolers, and cooled EGR. A suitably detailed kinetic scheme involving 155 reaction steps and 39 species for the oxidation of natural gas is employed to examine the pre-ignition reactions of the unburned mixtures that can lead to knock prior to being fully consumed by the propagating flame. The model predicts the onset of knock and its intensity once end gas auto-ignition occurs. The effects of turbo-charging and cooled EGR on the total energy to be released through auto-ignition and its effect on the intensity of the resulting knock are considered. The consequences of changes in the effectiveness of after and EGR-coolers, lean operation and reductions in the compression ratio on engine performance parameters, especially the incidence of knock are examined. The benefits, limitations, and possible penalties of the application of fuel lean operation combined with cooled EGR are also examined and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3