Annular Dump Diffuser and Deswirl System for Back-Pressure Control in Engine-Scale Transonic Annular Cascade

Author:

Michaud Mathias1,Ornano Francesco1,Povey Thomas1

Affiliation:

1. University of Oxford Department of Engineering Science, , Parks Road, Oxford OX1 3PJ , UK

Abstract

Abstract A common requirement for turbomachinery testing facilities is the ability to independently control Mach number and Reynolds number. In practice, this means independent control of the inlet total pressure and exit static pressure in a test facility. In this paper, we present a solution to this problem with particular applicability to large-scale annular test facilities. We describe the design and commissioning of a combined annular dump diffuser and deswirl system for back-pressure control in environments with high-whirl transonic flow. The particular application was an annular cascade of nozzle guide vanes from a current civil engine. The purpose was to provide independent control of Mach number and Reynolds number, by controlling the back-pressure in the intermediate annular plenum which forms the dump diffuser. The dump diffuser is necessary to facilitate optical and probe access (without interaction effects) and to reduce the risk of exit static pressure disturbances (due to particular duct design). The system has been installed and validated in the engine component aerothermal (ECAT) facility at the University of Oxford. In this implementation of the system, the high-whirl transonic flow from the nozzle guide vanes passes through a short, parallel annular duct, and is dumped into an annular plenum, before being re-accelerated into a deswirl vane ring. The deswirl ring turns the flow to the axial direction. The flow is then discharged through a variable choke plate into a silencer. Conditioning the flow to have zero whirl at the choke plate reduces the sensitivity of the choke plate effective blockage to the whirl angle. The design, deswirl vane aerodynamic performance, and overall system performance are assessed with detailed experiments and 3D unsteady computational fluid dynamics predictions. The control of high-whirl transonic flow is notoriously challenging, and the deswirl system has application to exhaust conditioning in a number of applications including annular cascade experiments and rocket turbo-pump exhaust systems.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. Design and Construction of a Transonic Test-Turbine Facility;Erhard,2000

2. The Whittle Laboratory Transonic Annular Cascade Wind Tunnel;Dominy,1988

3. The Design and Performance of a High Work Research Turbine;Vlasic;ASME J. Turbomach.,1996

4. Development of a 10 MW Facility for Gas Turbine Engine and Component Testing;Bernardini,2019

5. A New Annular Sector Cascade Test Facility to Investigate Steady State Cooling Effects;Wiers,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3