Affiliation:
1. Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
Abstract
Abstract
We numerically investigate the bandwidth and collimation characteristics of ultrasound beams generated by a simple collimated ultrasound beam source that consists of a piezoelectric disk operated near its radial mode resonances. We simulate the ultrasound beam generated in a fluid medium as a function of the excitation frequency for two cases: (1) free piezoelectric disk that corresponds to zero-traction along the lateral edge and (2) fixed piezoelectric disk that corresponds to zero-displacement along the lateral edge. We present and discuss the physical mechanism underpinning the frequency-dependent collimation and bandwidth properties of the ultrasound beams. We observe that the collimated beam generated by the free disk repeatedly lengthens/shortens and also extends/retracts sidelobes with increasing frequency. Alternatively, fixing the piezoelectric disk results in a consistent beam profile shape across a broad range of frequencies. This facilitates generating broadband signals such as a Gaussian pulse or chirp, which are common in ultrasound imaging. Thus, the fixed piezoelectric disk finds application as a collimated ultrasound beam source in a wide range of applications including medical ultrasound imaging, scanning acoustic microscopy, sonar detection, and other nondestructive ultrasound inspection techniques.
Funder
National Nuclear Security Administration
U.S. Department of Energy
Laboratory Directed Research and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献