Manufacturing Process Modeling and Optimization Based on Multi-Layer Perceptron Network

Author:

Liao T. Warren1,Chen L. J.2

Affiliation:

1. Industrial & Manufacturing Systems Engineering Department, Louisiana State University, Baton Rouge, LA 70803

2. TA Instruments, Inc., New Castle, DE 19720

Abstract

It has been shown that a manufacturing process can be modeled (learned) using Multi-Layer Perceptron (MLP) neural network and then optimized directly using the learned network. This paper extends the previous work by examining several different MLP training algorithms for manufacturing process modeling and three methods for process optimization. The transformation method is used to convert a constrained objective function into an unconstrained one, which is then used as the error function in the process optimization stage. The simulation results indicate that: (i) the conjugate gradient algorithms with backtracking line search outperform the standard BP algorithm in convergence speed; (ii) the neural network approaches could yield more accurate process models than the regression method; (iii) the BP with simulated annealing method is the most reliable optimization method to generate the best optimal solution, and (iv) process optimization directly performed on the neural network is possible but cannot be especially automated totally, especially when the process concerned is a mixed integer problem.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3