Geometric Nonlinearity Effects in the Response of Sandwich Wide Panels

Author:

Yuan Zhangxian1,Kardomateas George A.2,Frostig Yeoshua3

Affiliation:

1. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

2. Professor School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

3. Professor Faculty of Civil and Environmental Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel

Abstract

In the literature, there are various simplifying assumptions adopted in the kinematic relations of the faces and the core when considering a geometrically nonlinear problem in sandwich structures. Most commonly, only one nonlinear term is included in the faces and the core nonlinearities are neglected. A critical assessment of these assumptions, as well as the effects of including the other nonlinear terms in the faces and the core, is the scope of this paper. The comprehensive investigation of all the nonlinear terms is accomplished by deriving and employing an advanced nonlinear high-order theory, namely, the recently developed “extended high-order sandwich panel theory” (EHSAPT). This theory, which was derived as a linear theory, is first formulated in this paper in its full nonlinear version for the simpler one-dimensional case of sandwich wide panels/beams. Large displacements and moderate rotations are taken into account in both faces and core. In addition, a nonlinear EHSAPT-based finite element (FE) is developed. A series of simplified models with various nonlinear terms included are derived accordingly to check the validity of each of these assumptions. Two sandwich panel configurations, one with a “soft” and one with a “hard” core, loaded in three-point bending, are analyzed. The geometric nonlinearity effects and the relative merits of the corresponding simplifications are analyzed with these two numerical examples. In addition to a relative comparison among all these different assumptions, the results are also compared to the corresponding ones from a commercial FE code.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3