A Study on Modified Mechanical and Wear Characteristics of Epoxy-Particulate Filled Homogenous Composites and Their Functionally Graded Materials

Author:

Siddhartha 1,Patnaik Amar1,Satapathy Alok2,Bhatt Amba D.3

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India

2. Department of Mechanical Engineering, National Institute of Technology, Rourkela 759008, India

3. Department of Mechanical Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004, India

Abstract

This article presents the investigations on modified mechanical and wear characteristics of cement kiln dust (CKD) reinforced homogeneous epoxy composites and its functionally graded materials developed for tribological applications. CKD reinforced homogeneous and functionally graded epoxy composites are developed by simple mechanical stirring and vertical centrifugal casting technique, respectively. Mechanical properties of these graded composites are evaluated and compared with those of homogenously filled epoxy composites. Sliding wear tests are conducted over a range of sliding velocities (105–314 cm/s), normal loads (20–40 N), filler contents (0–20 wt %), and sliding distances (0.5–2 km). For this, a pin-on-disk machine and the design of experiments approach using Taguchi’s orthogonal arrays are used. A theoretical model is proposed for estimating the sliding wear rates for homogeneous, as well as graded composites. The results found from the theoretical model so proposed are found to be in good agreement with the experimental values under similar test conditions. This study reveals that the presence of cement kiln dust particles enhances the sliding wear resistance of epoxy resin and the homogeneous composites suffer greater wear loss than the graded composites. scanning electron microscopy micrograph confirms the graded dispersion of CKD particles in the matrix.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3