Modeling of the Off-Axis High Power Diode Laser Cladding Process

Author:

Wen Shaoyi1,Shin Yung C.21

Affiliation:

1. Center for Laser-based Manufacturing, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

2. Mem. ASME

Abstract

Off-axis high power diode laser (HPDL) cladding is commonly used for surface quality enhancement such as coating, part repairing, etc. Although some laser cladding models are available in literature, little has been reported on the modeling of powder flow and molten pool for a rectangular beam with side powder injection. In this article, a custom-designed flat nozzle delivers the powder material into a distinct molten pool formed by a HPDL with a rectangular beam. A powder model is first presented to reveal the powder flow behavior below the flat nozzle. Key parameters such as nozzle inclination angle, rectangular beam profile, shielding gas flow rates, and powder feed rate are incorporated so that spatial powder density, powder velocity, and temperature distribution are distinctly investigated. Then in order to describe thermal and fluidic behaviors around the molten pool formed by the rectangular beam, a three-dimensional self-consistent cladding model is developed with the incorporation of the distributed powder properties as input. The level set method is adopted to track the complex free surface evolution. Temperature fields and fluid motion in the molten pool area resulting from the profile of rectangular beam are distinctly revealed. The effect of continuous mass addition is also embedded into the governing equations, making the model more accurate. A HPDL cladding with little dilution is formed and the simulated results agree well with the experiment.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. High Power Diode Laser Cladding;Barnes;J. Mater. Process. Technol.

2. Laser Cladding Using High-Power Diode Lasers;Nowotny

3. The Advances and Characteristics of High-Power Diode Laser Materials Processing;Li;Opt. Lasers Eng.

4. High Power Diode Laser Technology and Applications;Bachmann;Proc. SPIE

5. Comparison of Muti-Feed and Off-Axis High Power Diode Laser (HPDL) Cladding;Tuominen;Proc. SPIE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3