Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade

Author:

Nasir Shakeel,Bolchoz Trey1,Ng Wing-Fai1,Zhang Luzeng J.2,Koo Moon Hee2,Anthony Richard J.3

Affiliation:

1. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

2. Heat Transfer Department, Solar Turbines Inc., San Diego, CA 92186

3. Propulsion DirectorateAir Force Research Laboratory, Wright-Patterson AFB, OH 45433

Abstract

This paper experimentally investigates the effect of blowing ratio and exit Reynolds number/Mach number on the film cooling performance of a showerhead film cooled first stage turbine vane. The vane midspan was instrumented with single-sided platinum thin film gauges to experimentally characterize the Nusselt number and film cooling effectiveness distributions over the surface. The vane was arranged in a two-dimensional, linear cascade in a heated, transonic, blow-down wind tunnel. Three different exit Mach numbers of Mex = 0.57, 0.76 and 1.0—corresponding to exit Reynolds numbers based on vane chord of 9.7 × 105, 1.1 × 106 and 1.5 × 106, respectively—were tested with an inlet free stream turbulence intensity (Tu) of 16% and an integral length scale normalized by vane pitch (Λx/P) of 0.23. A showerhead cooling scheme with five rows of cooling holes was tested at blowing ratios of BR = 0, 1.5, 2.0, and 2.5 and a density ratio of DR = 1.3. Nusselt number and adiabatic film cooling effectiveness distributions were presented on the vane surface over a range of s/C = −0.58 on the pressure side to s/C = 0.72 on the suction side of the vane. The primary effects of coolant injection were to augment the Nusselt number and reduce the adiabatic wall temperature downstream of the injection on the vane surface as compared to no film injection case (BR = 0) at all exit Mach number conditions. In general, an increase in blowing ratio (BR = 1.5 to 2.5) showed noticeable Nusselt number augmentation on pressure surface as compared to suction surface at exit Mach 0.57 and 0.75; however, the Nusselt number augmentation for these blowing ratios was found to be negligible on the vane surface for exit Mach 1.0 case. At exit Mach 1.0, an increase in blowing ratio (BR = 1.5 to 2.5) was observed to have an adverse effect on the adiabatic effectiveness on the pressure surface but had negligible effect on suction surface. The effectiveness trend on the suction surface was also found to be influenced by a favorable pressure gradient due to Mach number and boundary layer transition in the region s/C = 0.28 to s/C = 0.45 at all blowing ratio and exit Mach number conditions. An increase in Reynolds number from exit Mach 0.76 to 1.0 increased heat transfer levels on the vane surface at all blowing ratio conditions. A large increase in Reynolds number adversely affected adiabatic effectiveness on the pressure surface at all blowing ratio conditions. On the suction surface, a large increase in Reynolds number also affected adiabatic effectiveness in the favorable pressure gradient and boundary layer transition region.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3