Affiliation:
1. Department of Energy and Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432 Japan
Abstract
The local similarity solution procedure was successfully adopted to investigate non-Darcian flow and heat transfer through a boundary layer developed over a horizontal flat plate in a highly porous medium. The full boundary layer equations, which consider the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables deduced from a scale analysis. The results from this local similarity solution are found to be in good agreement with those obtained from a finite difference method. The effects of the convective inertia term, boundary viscous term, and porous inertia term on the velocity and temperature fields were examined in detail. Furthermore, useful asymptotic expressions for the local Nusselt number were derived in consideration of possible physical limiting conditions.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献