Relativistic Molecular Dynamics Simulations of Laser Ablation Process on the Xenon Solid

Author:

Wang Yun-Che1,Chen Jing-Wen1,Liao Lun-De2,Lin Hong-Chang2,Hwang Chi-Chuan2

Affiliation:

1. Department of Civil Engineering, Materials Program, National Cheng Kung University, 1 University Road, Tainan, Taiwan, R.O.C.

2. Department of Engineering Science, National Cheng Kung University, 1 University Road, Tainan, Taiwan, R.O.C.

Abstract

The phenomena of Coulomb explosion require the consideration of special relativity due to the involvement of high energy electrons or ions. It is known that laser ablation processes at high laser intensities may lead to the Coulomb explosion, and their released energy is in the regime of kEV to MeV. In contrast to conventional molecular dynamics (MD) simulations, we adopt the three-dimensional relativistic molecular dynamics (RMD) method to consider the effects of special relativity in the conventional MD simulation for charged particles in strong electromagnetic fields. Furthermore, we develop a Coulomb force scheme, combined with the Lennard-Jones potential, to calculate interactions between charged particles, and adopt a Verlet list scheme to compute the interactions between each particle. The energy transfer from the laser pulses to the solid surface is not directly simulated. Instead, we directly assign ion charges to the surface atoms that are illuminated by the laser. By introducing the Coulomb potential into the Lennard-Jones potential, we are able to mimic the laser energy being dumped into the xenon (Xe) solid, and track the motion of each Xe atom. In other words, the laser intensity is simulated by using the repulsive forces from the Coulomb potential. Both nonrelativistic and relativistic simulations are performed, and the RMD method provides more realistic results, in particular, when high-intensity laser is used. In addition, it is found that the damage depth does not increase with repeated laser ablation when the pulse frequency is comparable to the duration of the pulse. Furthermore, we report the time evolution of energy propagation in space in the laser ablation process. The temporal-spatial distribution of energy indirectly indicates the temperature evolution on the surface of the Xe solid under intense laser illumination.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation;Journal of Applied Physics;2013-02-28

2. Literature Survey of Numerical Heat Transfer (2000–2009): Part II;Numerical Heat Transfer, Part A: Applications;2011-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3