Affiliation:
1. Department of Mechanical and Nuclear Engineering, Northwestern University, Evanston, Ill. 60201
Abstract
Condensation of steam on a subcooled water layer was studied in a cocurrent horizontal channel at atmospheric pressure. The heat transfer coefficients were found to vary from 1.3 kW/m2°C to 20 kW/m2°C, depending on whether the liquid interface was smooth or wavy, increased with increasing steam flow rates and water flow rates. For all cases, 50 to 90 percent of the steam condensed within 1.2 m from the entrance. The average Nusselt numbers were correlated with average steam and water Reynolds numbers and average liquid Prandtl numbers, for both smooth and wavy interface flows. Finally, a correlation of the average heat transfer coefficient and condensation rate for wavy interface flow was obtained as a function of inlet conditions and distance downstream.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献