Nonlinear Adaptive Magneto-Thermal Analysis at Bushing Regions of a Transformers Cover Using Finite Difference Method

Author:

Zia Zahedi Mohammad,Iskender I.1

Affiliation:

1. ProfessorElectrical and ElectronicsEngineering Department,Engineering Faculty,Çankaya University,Ankara 06790, Turkeye-mail: ires@cankaya.edu.tr

Abstract

Abstract In this study, losses analysis at bushing regions of a transformer covers is done using finite difference method (FDM), considering that FDM being more flexible to deal with the nonlinear constitutive law and easier to be implemented than finite element (FE) and analytical methods. The analysis is performed based on a 2-level adaptive mesh solution of Maxwell equations and Ohm law at the cross section area in the axial symmetry page of a steel disk, taking account the nonlinear magnetic permeability of the steel. The losses density obtained, as a heat source, is imported into an alternating direction implicit (ADI) approach of heat conduction equation. Therefore, a finite difference (FD) solution algorithm for magneto-thermal analysis on cover plate is obtained by combination of adaptive mesh refinement and ADI-FDM, which improves the accuracy and decreases the computational time without losing accuracy. The reliability of the proposed technique is confirmed by experimental and FE method (FEM) results, considering the temperature distribution of the cover. The comparison of the results with those obtained from FEM and experiments shows the efficiency and capability of the method.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3