Effects of Materials on the Heat Transfer Coefficient During Condensation and Evaporation of R410A

Author:

Tang Weiyu1,Khan Tariq Amin2,Zheng Boren1,Wang Lei1,Li Wei1,Sherif S. A.3

Affiliation:

1. Department of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

2. Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Science & Technology, PAF Academy, Risalpur 24080, Pakistan

3. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

Abstract

Abstract An experimental investigation was conducted to demonstrate the effects of materials on the heat transfer characteristics of R410A during evaporation and condensation inside two horizontal plain tubes with the same inner diameter of 6 mm, but with two different materials of aluminum and stainless steel. The variation of vapor quality for the test section was kept in the range of 0.2–0.9, while mass velocities were allowed to vary from 100 to 400 kg/m2/s1. First, a series of single-phase and repetitive experiments were conducted to verify the accuracy and reliability of the test rig. Results of the evaporation experiments show that the plain aluminum tube performs best for all tested mass velocities. Several different correlations were employed to predict the present data, and their predictive ability was compared and discussed. Results indicate that the Liu and Winterton correlation could accurately predict the present results except for low mass velocities. Roughness effects were accounted for employing a correction factor. The larger roughness of the stainless steel tube was supposed to make the stainless steel tube perform better if roughness effects were accounted for, so the better performance of the aluminum tube was mainly attributed to the material effects. The pool boiling heat transfer as predicted by the VDI model was compared with the experimental results, and more obvious material effects have been found for pool boiling conditions. The minor differences between the two tubes in this case may be explained by the nucleate boiling suppression and incomplete wetting. For the condensation experiments, little difference was found between the two tested tubes, which means that the material and roughness effects may have had little influence on the thermal performance during condensation.

Funder

National Science Foundation of China

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved correlation for heat transfer during condensation in mini and macro channels;International Journal of Heat and Mass Transfer;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3