Numerical Calculations of the Breakup of Highly Loaded Slurry Jets

Author:

Situ M.1,Schetz J. A.2

Affiliation:

1. Beijing Research Institute, Beijing, China

2. Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va.

Abstract

A complete numerical calculation procedure for predicting the effects of mass loading and particle diameter on laminar slurry jet breakup in a low velocity, coaxial gas stream has been developed. The method is based on the Volume of Fluid technique for the Navier-Stokes equations. The severe restrictions involved in earlier treatments have been relaxed. The influence of particle loading on liquid phase density and the influence of particle spacing on drag are included. The particular case considered is a slurry with a methanol liquid phase with aluminum oxide beads in order to compare with some related experimental results. The methanol liquid in the slurry is vaporized due to mass transfer in the gas stream. The variation of the instantaneous jet shape of the methanol slurry jet at low loadings is generally similar to that of an all-liquid methanol jet, but the final shapes at breakup are different. In the region of low mass loading (up to 20 percent), the effects of mass loading are to stabilize the interface and increase the breakup time of the slurry jet with increasing mass loading. Above that region of mass loading (more than 20 percent), the effects of mass loading are to destabilize the interface and decrease the breakup time of the slurry jet with increased mass loading. At the same mass loading condition, a slurry jet with large diameter particles has a more stabilizing effect than one with small diameter particles. Therefore, a slurry jet with higher mass loading and smaller diameter particles breaks up faster.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gel propellants;Progress in Energy and Combustion Science;2021-03

2. Rotary spray congealing of a suspension: Effect of disk speed and dispersed particle properties;Journal of Microencapsulation;2006-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3