A Numerical Simulation for the Determination of the Shunt Ratio at a T-Junction With Different Branch Angles, Viscosities, and Flow Rates

Author:

Zhang Nan1,Li Haitao1,Zhang Yunbao2,Deng Qing3,Tan Yongsheng1

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China e-mail:

2. Tianjin Branch of CNOOC Ltd., Tianjin 300452, China e-mail:

3. Petroleum Development Center CO., Ltd of Shengli Oil Field, SINOPEC, Dongying 257001, China e-mail:

Abstract

T-junctions have been applied in water-control structures. A comprehensive understanding of shunt characteristics can contribute to the optimal design of T-junctions. In this work, we seek to understand the shunt ratio of fluids with different viscosities in a T-junction and to achieve a greater shunt ratio. The computational fluid dynamics (CFD) approach is applied to study the influence of the properties, such as the fluid viscosity, the branch angle, the channel shape, and the flow rate, on the shunt ratio in a T-junction. The viscosity of oil can be divided into three intervals, and the optimal angles of the T-junction are different in each interval. For the fluid viscosity in the 1–20 cP range, the optimal branch angle is in the 45–60 deg range. For the fluid viscosity in the 20–65 cP range, the branch angle should be designed to be 45 deg. For the viscosity greater than 65 cP, the branch angle should be designed to be 75 deg. The appearance of the eddy and secondary flow will reduce the flow. The secondary flow and eddy intensity on the branch increase with increasing angle. The secondary flow intensity of the main channel decreases gradually with the increase in the angle. This study provides an important guidance for the design of automatic water control valve tools.

Funder

National Science and Technology Development Agency

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3