Stochastic Optimal Motion Planning for the Attitude Kinematics of a Rigid Body With Non-Gaussian Uncertainties

Author:

Lee Taeyoung1

Affiliation:

1. Assistant Professor Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052 e-mail:

Abstract

This paper investigates global uncertainty propagation and stochastic motion planning for the attitude kinematics of a rigid body. The Fokker–Planck equation on the special orthogonal group is numerically solved via noncommutative harmonic analysis to propagate a probability density function along flows of the attitude kinematics. Based on this, a stochastic optimal control problem is formulated to rotate a rigid body while avoiding obstacles within uncertain environments in an optimal fashion. The proposed intrinsic, geometric formulation does not require the common assumption that uncertainties are Gaussian or localized. It can be also applied to complex rotational maneuvers of a rigid body without singularities in a unified way. The desirable properties are illustrated by numerical examples.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference27 articles.

1. Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles. I. Algorithmic Details;J. Comput. Phys.,2005

2. LaValle, S., and Sharma, R., 1995, “A Framework for Motion Planning in Stochastic Environments: Modeling and Analysis,” Proceedings of the IEEE Conference on Robotics and Automation, pp. 3057–3062.10.1109/ROBOT.1995.525719

3. LaValle, S., and Sharma, R., 1995, “A Framework for Motion Planning in Stochastic Environments: Applications and Computational Issues,” Proceedings of the IEEE Conference on Robotics and Automation, pp. 3063–3068.10.1109/ROBOT.1995.525720

4. The Stochastic Motion Roadmap: A Sampling Framework for Planning With Markov Motion Uncertainty,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty Propagation for General Stochastic Hybrid Systems on Compact Lie Groups;SIAM Journal on Applied Dynamical Systems;2022-08-31

2. Real Harmonic Analysis on the Special Orthogonal Group;International Journal of Analysis and Applications;2022-04-04

3. Stochastic stabilization of rigid body motion of a spacecraft on SE(3);International Journal of Control;2019-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3