Experimental and Theoretical Studies of a Novel Venturi Lean Premixed Prevaporized (LPP) Combustor

Author:

Ro̸kke N. A.1,Wilson A. J. W.1

Affiliation:

1. Rolls-Royce, Ulstein Turbine AS, N-5811 Bergen, Norway

Abstract

A new gas turbine engine using a unique layout patented in Norway has a low-emission combustion system under development. The gas generator uses entirely radial rotating components and employs a dual entry LP radial compressor, a radial HP compressor, and a radial HP turbine. The power turbine is of a two-stage axial design, coupled to an epicyclical gear embedded in the exhaust duct. Several combustor concepts have been tested and evaluated during the development of the engine. The engine is targeted for marine, power generation, and train propulsion. For the marine and train application liquid fuel operation is needed, thus the primary focus in the development has been for a lean premixed prevapourised system. An interesting concept utilizing two venturi premixers has been studied intensively. By utilizing venturi premixers the following advantages can be achieved: (1) low overall pressure drop but high injector pressure drop and velocities in the mixing region (throat region), (2) high shear forces and drag imposed on the droplets enhancing droplet shedding and evaporation, and (3) excellent emission behavior at designated load conditions. Although these advantages can benefit gas turbine low-emission combustion, the challenges in using venturi premixers are: (1) venturis are susceptible to separation and thus flame stabilization within the venturi which is detrimental and (2) inlet flow disturbances enhance the tendency for separation in the venturis and must be minimized. Studies were launched to investigate a proposed combustor configuration. These studies included analytical studies, computational fluid dynamics (CFD) calculations of isothermal and combusting flow inside the combustor together with rig tests at atmospheric, medium, and full pressure. Finally, engine tests within the full operating range were conducted with very favorable emission figures for lean premixed prevaporized (LPP) operation. The system was capable of running at below 20 ppm NOx and CO, at elevated power for liquid fuel. Control of part load performance and emissions is by variable fuel staging of the two venturi stages. The paper highlights the features of the venturi combustor development and discusses the characteristics in terms of flow conditions and droplet motion, heat transfer, ignition delay time, and emissions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3