Solar-Upgrading of Fuels for Generation of Electricity

Author:

Tamme Rainer1,Buck Reiner1,Epstein Michael2,Fisher Uriyel3,Sugarmen Chemi3

Affiliation:

1. DLR-ITT, Stuttgart, Germany

2. Weizmann Institute of Science (WIS), Rehovot, Israel

3. ORMAT Industries Ltd., Yavne, Israel

Abstract

Abstract This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver reactors and utilizing the upgraded, hydrogen-rich fuel, in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes, about 30 % of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets, as well as in large scale to be operated in connection with conventional combined-cycle plants. The solar reforming process has an intrinsic potential for solar/fossil hybrid operation, as well as a capability of solar energy storage to increase the capacity factor. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, modified to enable operation both on fossil fuel as well as on the product gas from the solar reformer. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science, Israel. Start-up of the pilot plant is scheduled for the end of the year 2000. The midterm goal is to replace fossil fuel feedstock by renewable or non conventional feedstocks in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emissions. Examples are given for solar upgrading of bio-gas from municipal solid waste as well as for upgrading of weak gas resources. With some feedstock pretreatment (removal of sulfur components, adjustment of composition) the product gases after solar reforming can be used for further processing to methanol or other chemical compounds.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Solar energy dependent determination of wavelength using LASER source;International Journal of Scientific Research in Science, Engineering and Technology;2022-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3