A Compendium of Methods for Determining the Exergy Balance Terms Applied to Reciprocating Internal Combustion Engines

Author:

Sahoo Bibhuti B.1,Dabi Maryom2,Saha Ujjwal K.3

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology Vellore, Vellore 632014, Tamil Nadu, India

2. Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India

3. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Abstract

Abstract Exergy analysis of the reciprocating internal combustion (IC) engines is studied by estimating various input and output energy transfer parameters concerning a dead state reference. Exergy terms such as fuel input, work output, cooling, and exhaust gas are measured and are set into the exergy balance equation to determine the amount of loss or destruction. Exergy destructions are found in many forms such as combustion (entropy generation), cylinder wall, friction, mixing, blow-by, and others. These exergy terms have been estimated by considering various factors such as engine type, fuel type, environmental condition, and others. In this article, the different methods employed in estimating these exergy terms have been reviewed. It attempts to make a compendium of these evaluation methods and segregates them under individual exergy terms with necessary descriptions. The fuel input measurement is mostly based on Gibb's free energy and the lower heating value, whereas its higher heating value is used during the fuel exergy calculation on a molar basis. The work output of the engines is estimated either from the crankshaft or by analyzing the cylinder pressure and volume. The exergy transfer with cooling medium and exhaust gas depends on the temperature of the gas. The maximum achievable engine performance is quantified by estimating the exergy efficiency. This piece of study will not only provide plenty of information on exergy evaluation methods of IC engines but will also allow future researchers to adopt the appropriate one.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3