Observation and Computation of Vortex and/or Reverse Flow Development in Mixed Convection of Air in a Slightly Inclined Rectangular Duct

Author:

Lin W. L1,Lin T. F.1

Affiliation:

1. Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

Abstract

Combined flow visualization and conjugated numerical heat transfer analysis were carried out to study the axial evolution of the buoyancy induced secondary vortex and reverse flow in a mixed convective air flow through a bottom heated, slightly inclined rectangular duct. Results were obtained for the Grashof number Gr ranging from 1.6 × 103 to 2.8 × 105, inclined angle φ from −20 deg to 26 deg and the Reynolds number Re below 102 covering the steady and time dependent flows. For the buoyancy-opposing case, at a certain critical buoyancy-to-inertia ratio depending on the Re and φ both the experimental and numerical results clearly showed the generation of the longitudinal vortex rolls in the entry half of the duct and a slender reverse flow zone was induced near the exit end of the duct. At a higher buoyancy-to-inertia ratio the stronger reverse flow moves upstream and is in a time periodic snaking motion which is considered to result from the Kelvin-Helmholtz instability associated with the two counter flow streams, namely, the downstream moving longitudinal vortex rolls and the upstream moving reverse flow. Through the viscous shearing effects the strong snaking reverse flow induces a number of eddies moving along it and the longitudinal rolls are pushed towards the duct sides. This strong interaction between the vortex flow and reverse flow leads to an earlier transition to turbulence. A correlation equation was proposed for the penetration length of the reverse flow. However, for buoyancy-assisting flow no reverse flow is induced and the longitudinal vortex rolls prevail for the buoyancy-to-inertia ratio up to 2.8 × 105. Significant conjugated heat transfer effects were noted from the numerical results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3