Effect of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study

Author:

Adams Maxwell G.1,Beard Paul F.1,Stokes Mark R.2,Wallin Fredrik3,Chana Kam S.1,Povey Thomas1

Affiliation:

1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

2. Rolls-Royce plc, Derby DE24 8BJ, UK

3. GKN Aerospace Engine Systems, SE-461 81 Trollhättan, Sweden

Abstract

Abstract Recently developed lean-burn combustors offer reduced NOx emissions for gas turbines. The flow at exit of lean-burn combustors is dominated by hot streaks and residual swirl, which have been shown—individually—to impact turbine aerodynamic performance. Studies have shown that residual swirl at inlet to the high-pressure (HP) stage predominantly affects the vane aerodynamics, while hot streaks affect the rotor aerodynamics. Studies have also shown that these changes to the HP stage aerodynamics can affect the downstream intermediate-pressure (IP) vane aerodynamics. Yet, to date, there have been no published studies presenting experimental turbine test data with both swirl and hot streaks simultaneously present at inlet. This paper presents the first experimental and computational investigation into the effects of combined hot streaks and swirl on turbine aerodynamics. Experimental measurements were conducted in the Oxford Turbine Research Facility (OTRF), a short-duration rotating transonic facility, in which the nondimensional parameters relevant to turbine fluid mechanics and heat transfer are matched to engine conditions. The turbine under investigation is the recently commissioned LEMCOTEC turbine, which has been designed to represent modern aero-engine architectures and for robustness to lean-burn combustor-representative inlet flows. The turbine comprises an unshrouded HP stage with fully film-cooled vanes followed by low-turning IP vanes in an S-shaped duct. Two turbine inlet flows are considered. The first is uniform in total pressure, total temperature, and flow angle. The second features a nonuniform total temperature (hot streak) profile featuring strong radial and weak circumferential variation superimposed on a swirling velocity profile. This combined nonuniform profile is generated using a new combustor simulator that has recently been commissioned in the OTRF. Detailed area surveys of the flow were conducted at turbine inlet, HP rotor exit, and IP vane exit, and loading distributions were measured on the HP and IP vanes. Measurements and unsteady Reynolds-averaged Navier–Stokes (URANS) predictions suggest that the inlet temperature nonuniformity was relatively well preserved upon being convected through the turbine: the predicted root-mean-square variation in the IP vane exit total temperature field was approximately double that with uniform inlet conditions. Relatively poor comparisons between URANS and experiment highlight the challenge of accurately predicting the complex IP vane flow. In particular, small differences in exit whirl angle resulted in substantial differences in IP vane exit velocity and thus radial pressure gradient.

Funder

European Commission

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3