Mooring Designs for Floating Offshore Wind Turbines Leveraging Experience From the Oil & Gas Industry

Author:

Ma Kai-tung1,Wu Yongyan2,Stolen Simen Fodstad3,Bello Leopoldo4,ver der Horst Menno5,Luo Yong6

Affiliation:

1. National Taiwan University, Taipei, Taiwan (Greater China)

2. Aker Solutions, Houston, Texas, United States

3. Aker Offshore Wind, Oslo, Norway

4. Vryhof, Schiedam, Netherlands

5. Chevron, Houston, Texas, United States

6. COTEC Ltd, Houston, Texas, United States

Abstract

Abstract As renewable energy developers start venturing into deeper waters, the floating offshore wind turbines (FOWTs) are becoming the preferred solutions over fixed supporting structures. Many similarities can be identified between a FOWT and a floating oil & gas facility, such as floater concepts (spar, semi-submersible, tension leg platform, etc) and their mooring system designs. This paper focuses on the mooring designs for FOWTs by leveraging the extensive experience gained from the offshore oil & gas industry. Similarities and differences are highlighted in design criteria, mooring analysis, long-term integrity management, installation method and project execution. The established practices regarding mooring design and analysis are reviewed. Anchor radius is recommended based on water depth by referencing sample mooring designs from the oil & gas industry. Long-term mooring integrity and failure rates are summarized. Meanwhile, a few well-known issues are discussed, such as line break due to fatigue, corrosion on chain, and known issues with components such as clump weights. Regarding mooring installation, the established method for prelay and hook-up is reviewed. Finally, opportunities for cost reduction of mooring systems of FOWTs are presented related to project execution of large scale wind farms as well as potential areas of innovation, such as installation methods, use of synthetic fiber rope, and digitalization. In summary, the state-of-the-art practices from the oil & gas industry are reviewed and documented to benefit the developments of upcoming FOWT projects.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3