Numerical Computation of One-Dimensional Unsteady Two-Phase Flow Using HEM Model and IAPWS IF-97 Equations of State

Author:

Khola Nitin1,Pandey Manmohan1

Affiliation:

1. Indian Institute of Technology Guwahati, Guwahati, India

Abstract

Numerical simulation of transients in two-phase flow is crucial to simulate accident-like and aberrant conditions of nuclear reactors for safety analysis. A considerable number of such problems can be treated as one-dimensional with significant reduction in complexity without much loss in applicability. Most commercial thermal hydraulic codes are based on the two-fluid model, which solves balance equations for each phase and also accounts for thermodynamic non-equilibrium between the phases. However, the homogenous equilibrium mixture (HEM) model of two-phase flow can be employed to develop simple and efficient codes for transient simulations, using which extensive parametric studies can be carried out. In the present work, a code for numerical computation of unsteady one-dimensional two-phase flow has been developed and reactor transients have been simulated. The governing equations were obtained by the HEM model and were decoupled and approximated using the sectionalized compressible flow (SC) model and the momentum integral (MI) model. The equations of state used in the code are based on IAPWS Industrial Formulation-97. Pressure and heat flux transients for PWR and BWR were simulated with the code and compared with those reported in the literature. Further numerical simulations with the code were carried out to predict the transient response of nuclear reactors to various perturbations.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Alternative Formalism for the Single-Heated Channel Numerical Analysis;Mathematical Models and Computer Simulations;2022-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3