Quasidimensional Modeling of Direct Injection Diesel Engine Nitric Oxide, Soot, and Unburned Hydrocarbon Emissions

Author:

Jung Dohoy1,Assanis Dennis N.1

Affiliation:

1. Department of Mechanical Engineering, The University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109-2133

Abstract

In this study we report the development and validation of phenomenological models for predicting direct injection (DI) diesel engine emissions, including nitric oxide (NO), soot, and unburned hydrocarbons (HC), using a full engine cycle simulation. The cycle simulation developed earlier by the authors (D. Jung and D. N. Assanis, 2001, SAE Transactions: Journal of Engines, 2001-01-1246) features a quasidimensional, multizone, spray combustion model to account for transient spray evolution, fuel–air mixing, ignition and combustion. The Zeldovich mechanism is used for predicting NO emissions. Soot formation and oxidation is calculated with a semiempirical, two-rate equation model. Unburned HC emissions models account for three major HC sources in DI diesel engines: (1) leaned-out fuel during the ignition delay, (2) fuel yielded by the sac volume and nozzle hole, and (3) overpenetrated fuel. The emissions models have been validated against experimental data obtained from representative heavy-duty DI diesel engines. It is shown that the models can predict the emissions with reasonable accuracy. Following validation, the usefulness of the cycle simulation as a practical design tool is demonstrated with a case study of the effect of the discharge coefficient of the injector nozzle on pollutant emissions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3