Effectiveness of a Serpentine Inlet Duct Flow Control Technique at Design and Off-Design Simulated Flight Conditions

Author:

Scribben Angie Rabe1,Ng Wing1,Burdisso Ricardo1

Affiliation:

1. Mechanical Engineering Department, Virginia Tech, Blacksburg, VA 24061

Abstract

Abstract An experimental investigation was conducted in a static ground test facility to determine the effectiveness of a serpentine inlet duct active flow control technique for two simulated flight conditions. The experiments used a scaled model of a compact, diffusing, serpentine, engine inlet duct developed by Lockheed Martin with a flow control technique using air injection through microjets at 1% of the inlet mass flow rate. The experimental results, in the form of total pressure measurements at the exit of the inlet, were used to predict the stability of a compression system through a parallel compressor model. The inlet duct was tested at cruise condition and angle of attack flight cases to determine the change in inlet performance due to flow control at different flight conditions. The experiments were run at an inlet throat Mach number of 0.55 and a resulting Reynolds number, based on the hydraulic diameter at the inlet throat, of 1.76*105. For both of the flight conditions tested, the flow control technique was found to reduce inlet distortion at the exit of the inlet by as much as 70% while increasing total pressure recovery by as much as 2%. The inlet total pressure profile was input in a parallel compressor model to predict the changes in stability margin of a compression system due to flow control for design and off-design flight conditions. Without flow control, both cases show a reduction in stability margin of 70%. With the addition of flow control, each case was able to recover a significant portion (up to 55%) of the undistorted stability margin. This flow control technique has improved the operating range of a compression system as compared to the same inlet duct without flow control.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. The Flow in S-Shaped Ducts;Bansod;Aeronaut. Q.

2. Measurements and Computations of Flow in Pipe Bends;Rowe;J. Fluid Mech.

3. Sullivan, J. P., Murthy, S. N. B., Davis, R., and Hong, S., 1982, “S-Shaped Duct Flows,” Office of Naval Research Contract Number N-78-C-0710.

4. Vakili, A., Wu, J. M., Liver, P., and Bhat, M. K., 1983, “An Experimental Investigation of Secondary Flows in an S-Shaped Circular Duct,” NASA Final Report NAG3–233.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3