A Novel Trigger Mechanism for a Dual-Filter to Improve the State-of-Charge Estimation of Lithium-Ion Batteries

Author:

Yu Chuanxiang1,Huang Rui1,Sang Zhaoyu1,Yang Shiya1

Affiliation:

1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China

Abstract

Abstract State-of-charge (SOC) estimation is essential in the energy management of electric vehicles. In the context of SOC estimation, a dual filter based on the equivalent circuit model represents an important research direction. The trigger for parameter filter in a dual filter has a significant influence on the algorithm, despite which it has been studied scarcely. The present paper, therefore, discusses the types and characteristics of triggers reported in the literature and proposes a novel trigger mechanism for improving the accuracy and robustness of SOC estimation. The proposed mechanism is based on an open-loop model, which determines whether to trigger the parameter filter based on the model voltage error. In the present work, particle filter (PF) is used as the state filter and Kalman filter (KF) as the parameter filter. This dual filter is used as a carrier to compare the proposed trigger with three other triggers and single filter algorithms, including PF and unscented Kalman filter (UKF). According to the results, under different dynamic cycles, initial SOC values, and temperatures, the root-mean-square error of the SOC estimated using the proposed algorithm is at least 34.07% lower than the value estimated using other approaches. In terms of computation time, the value is 4.67%. Therefore, the superiority of the proposed mechanism is demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3