Laminar Convective Nanofluid Flow Over a Backward-Facing Step With an Elastic Bottom Wall

Author:

Selimefendigil Fatih1,Öztop Hakan F.2

Affiliation:

1. Department of Mechanical Engineering, Celal Bayar University, Manisa 45140, Turkey e-mail:

2. Professor Technology Faculty, Department of Mechanical Engineering, Fırat University, Elaziğ 23119, Turkey e-mail:

Abstract

In the present study, laminar forced convective nanofluid flow over a backward-facing step was numerically investigated. The bottom wall downstream of the step was flexible, and finite element method was used to solve the governing equations. The numerical simulation was performed for a range of Reynolds number (between 25 and 250), elastic modulus of the flexible wall (between 104 and 106), and solid particle volume fraction (between 0 and 0.035). It was observed that the flexibility of the bottom wall results in the variation of the fluid flow and heat transfer characteristics for the backward-facing step problem. As the value of Reynolds number and solid particle volume fraction enhances, local and average heat transfer rates increase. At the highest value of Reynolds number, heat transfer rate is higher for the case with the wall having lowest value of elastic modulus whereas the situation is reversed for other value of Reynolds number. Average Nusselt number reduces by about 9.21% and increases by about 6.1% for the flexible wall with the lowest elastic modulus as compared to a rigid bottom wall for Reynolds number of 25 and 250. Adding nano-additives to the base fluid results in higher heat transfer enhancements. Average heat transfer rates enhance by about 35.72% and 35.32% at the highest solid particle volume fraction as compared to nanofluid with solid volume fraction of 0.01 for the case with wall at the lowest and highest elastic modulus. A polynomial type correlation for the average Nusselt number along the flexible hot wall was proposed, which is dependent on the elastic modulus and solid particle volume fraction. The results of this study are useful for many thermal engineering problems where flow separation and reattachment coupled with heat transfer occur. Control of convective heat transfer for such configurations with wall flexibility and nanoparticle inclusion to the base fluid was aimed in this study to find the effects of various pertinent parameters for heat transfer enhancement.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3