Optimal Design of a Helmholtz Resonator With a Flexible End Plate

Author:

Kurdi Mohammad H.1,Scott Duncan G.2,Nudehi Shahin S.2

Affiliation:

1. Division of Business and Engineering, Pennsylvania State University, Altoona, PA 16601 e-mail:

2. Department of Mechanical Engineering, Valparaiso University, Valparaiso, IN 46383 e-mail:

Abstract

This paper describes a design process that produces a small volume Helmholtz resonator capable of achieving high transmission loss across a desired frequency range. A multiobjective optimization formulation was used to design a Helmholtz resonator with a flexible end plate. The optimization formulation generated a Pareto curve of design solutions that quantify the trade-off between the optimization goals: minimum resonator volume and maximum transmission loss across a specified frequency range. The optimization problem was formulated and solved in the following manner. First, a mathematical formulation for the transmission loss of the Helmholtz resonator with a flexible plate was completed based on the resonator design parameters. Then, the weighted transmission loss across a specified frequency range and a minimum resonator volume were defined as optimization objectives. Finally, the Pareto curve of optimum design solutions was calculated using a gradient-based approach via the ɛ-constraint method. The optimization results allow the designer to select resonator design parameters that meet the requirements for both transmission loss and resonator volume. To validate the optimization results, two optimal Helmholtz resonators were manufactured and experimentally confirmed.

Publisher

ASME International

Subject

General Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3