Multi-Metric Validation Under Uncertainty for Multivariate Model Outputs and Limited Measurements

Author:

White Andrew1,Mahadevan Sankaran1,Schmucker Jason2,Karl Alexander2

Affiliation:

1. Department of Civil and Environmental Engineering, Vanderbilt University , Nashville, TN 37235

2. Rolls-Royce Corporation , Indianapolis, IN 46225

Abstract

Abstract Model validation for real-world systems involves multiple sources of uncertainty, multivariate model outputs, and often a limited number of measurement samples. These factors preclude the use of many existing validation metrics, or at least limit the ability of the practitioner to derive insights from computed metrics. This paper seeks to extend the area metric (univariate only) and the model reliability metric (univariate and multivariate) to account for these issues. The model reliability metric was found to be more extendable to multivariate outputs, whereas the area metric presented some difficulties. Metrics of different types (area and model reliability), dimensionality (univariate and multivariate), and objective (bias effects, shape effects, or both) are used together in a “multimetric” approach that provides a more informative validation assessment. The univariate metrics can be used for output-by-output model diagnosis and the multivariate metrics contributes an overall model assessment that includes correlation among the outputs. The extensions to the validation metrics in this paper address limited measurement sample size, improve the interpretability of the metric results by separating the effects of distribution bias and shape, and enhance the model reliability metric's tolerance parameter. The proposed validation approach is demonstrated with a bivariate numerical example and then applied to a gas turbine engine heat transfer model.

Funder

Rolls-Royce

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference44 articles.

1. Validation of Computational Solid Mechanics Models;CEN16799:,2014

2. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer;ASME,,2009

3. Standard for Models and Simulations;NASA,,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3