Numerical Investigation of In-Cylinder Combustion Behaviors in a Medium-Speed Diesel Engine

Author:

Yan Yuchao1,Shang Tansu2,Li Lingmin2,Yang Ruomiao1,Liu Zhentao1,Liu Jinlong1

Affiliation:

1. Zhejiang University Power Machinery and Vehicular Engineering Institute, , Hangzhou 310027 , China

2. Luoyang Tractor Research Institute Co., Ltd. State Key Laboratory of Intelligent Agricultural Power Equipment, , Luoyang 471039 , China

Abstract

Abstract This study aims to advance understanding of in-cylinder combustion processes in medium-speed diesel engines, which are extensively employed in heavy-duty applications where electrification proves inefficient yet remains insufficiently examined in the literature. By modeling a four-stroke engine with dimensions of 210 mm bore and 310 mm stroke, operating at 900 rpm under full load, this research identifies distinct combustion characteristics that differentiate medium-speed engines from their high-speed counterparts. Key findings illustrate that super turbocharging in medium-speed engines enhances the combustion of the fuel–air mixture under elevated temperatures and pressures. Moreover, an increased stroke length promotes gas velocity and turbulence, facilitating fuel atomization and mixing. Notably, rapid fuel ignition occurs near the nozzle due to the high temperature of compressed air, reducing the ignition delay. As a result, the premixed combustion stage nearly disappears, with diffusion combustion dominating, especially pronounced with long-duration injection, a characteristic of medium-speed engines. The study also reveals a more uniform but elevated distribution of nitrogen oxide emissions in medium-speed engines, attributed to prolonged high-temperature conditions that both facilitate their formation. Early stages of diffusion combustion show high concentrations of incomplete combustion products. However, as the combustion process progresses, the conditions favor the complete oxidation of these products at high temperatures, resulting in decreased carbon-based pollutions. In addition, the larger combustion chamber and enhanced turbulence characteristic of medium-speed engines support efficient fuel and air mixing without necessitating the swirl effect required by high-speed engines, diminishing the dependence on wall impingement dynamics for air utilization. Consequently, efficiency optimization strategies for medium-speed engines, emphasizing adjustable injection parameters, encounter fewer constraints than those inherent to the spatial limitations of high-speed engines.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3