Fine Particulate Formation During Switchgrass/Coal Cofiring

Author:

Blevins Linda G.1,Cauley Thomas H.1

Affiliation:

1. Combustion Research Facility, P.O. Box 969, MS 9052, Sandia National Laboratories, Livermore, CA 94551-0969

Abstract

Experiments to examine the effects of biomass/coal cofiring on fine particle formation were performed in the Sandia Multi-Fuel Combustor using fuels of pure coal, three combinations of switchgrass and coal, and pure switchgrass. For this work, fine particles with aerodynamic diameter between 10 nm and 1 μm were examined. A constant solid-fuel thermal input of 8 kW was maintained. The combustion products were cooled from 1200 to 420°C during passage through the 4.2 m long reactor to simulate the temperatures experienced in the convection pass of a boiler. Fine particle number densities, mass concentrations, and total integrated number and mass concentrations at the reactor exit were determined using a scanning mobility particle sizer. The fine particle number concentrations for cofiring were much higher than those achieved with dedicated coal combustion. However, the total integrated mass concentration of particles remained essentially constant for all levels of cofiring from 0% coal to 100% coal. The constant mass concentration is significant because pending environmental regulations are likely to be based on particle mass rather than particle size.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3