Modeling Viscous Oil Cavitating Flow in a Centrifugal Pump

Author:

Li Wen-Guang1

Affiliation:

1. Professor Department of Fluid Machinery, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu 730050, China e-mail:

Abstract

Properly modeling cavitating flow in a centrifugal pump is a very important issue for prediction of cavitation performance in pump hydraulic design optimization and application. As a first trial, the issue is explored by using computational fluid dynamics (CFD) method plus the full cavitation model herein. To secure a smoothed head-net positive suction head available (NPSHa) curve, several critical techniques are adopted. The cavitation model is validated against the experimental data in literature. The predicted net positive suction head required (NPSHr) correction factor for viscosity oils is compared with the existing measured data and empirical correlation curve, and the factor is correlated to impeller Reynolds number quantitatively. A useful relation between the pump head coefficient and vapor plus noncondensable gas-to-liquid volume ratio in the impeller is obtained. Vapor and noncondensable gas concentration profiles are illustrated in the impeller, and a “pseudocavitation” effect is confirmed as NPSHa is reduced. The effects of exit blade angle on NPSHr are presented, and the contributions of liquid viscosity and noncondensable gas concentration to the increase of NPSHr at a higher viscosity are identified.

Publisher

ASME International

Subject

Mechanical Engineering

Reference57 articles.

1. Experiment Studies on Cavitation Characteristics of the Centrifugal Oil Pump for Pumping Viscous Liquid;J. Eng. Thermophys.,2006

2. Influence of the Shaft Speed to the Centrifugal Oil Pump Cavitation Characteristics and Conversion Study;J. Eng. Thermophys.,2008

3. Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests;ASME J. Fluids Eng.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3