Impact of Exit Duct Dynamic Response on Compressor Stability

Author:

Zhang Wenqiang1,Vahdati Mehdi1,Zhao Fanzhou1

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Abstract Abrupt distortions can appear as a result of transient crosswind or during rapid aircraft maneuvers. Such distortions are known to reduce the aerodynamic stability of engines and therefore present a major concern to all aero-engine manufacturers. To assess the aerodynamic stability of fan blades due to distortions, rig tests are usually carried out to establish the loss in stall margin. In such test campaigns, an exit duct (which is followed by a nozzle) is placed downstream of the fan blade, and the operating condition of the fan is controlled by this nozzle. It is shown in this paper that in such rig tests, the length of duct downstream of a fan has a significant impact on fan stall margin. The key contributor for such interaction is the dynamic response of the exit duct, and the aerodynamic stability of the fan is affected by the acoustic reflection from the exit nozzle. To study the underlying physics, transient response in the exit duct downstream of a transonic fan stage was studied numerically using a simplified model. Simulation results, along with calculations based on analytical theories, confirmed the generation, propagation, and reflection of waves induced by the inlet distortion. A quantitative relationship concerning the lengths of the compression system is introduced which determines whether a duct setup would have beneficial or detrimental influences on compressor aerodynamic stability. The findings of this research have great implications for the stability assessment of fans as the stability margin can be affected by the waves generated in bypass ducts.

Funder

China Scholarship Council

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3