Development of Gasoline Direct Injection Engine for Improving Brake Thermal Efficiency Over 44%

Author:

Jung Dongwon1,Lee Byeongseok1,Son Jinwook1,Woo Soohyung1,Kim Youngnam1

Affiliation:

1. Hyundai Motor Company, Namyang-eup, Hwaseong-si, Gyeonggi-do 18280, South Korea

Abstract

Abstract This study demonstrates the effects of technologies applied for the development of gasoline direct injection (GDI) engine for improving the brake thermal efficiency (BTE). The test engine has a relatively high stroke to bore ratio of 1.4 with a displacement of 2156 cm3. All experiments have been conducted for stoichiometric operation at 2000 RPM. First, since compression ratio (CR) is directly related to the thermal efficiency, four CR were explored for operation without exhaust gas recirculation (EGR). Then, for the same four CR, EGR was used to suppress the knock occurrence at high loads, and its effect on initial and main combustion duration was compared. Second, the shape of intake port was revised to increase tumble flow for reducing combustion duration, and extending EGR-stability limit further. Then, as an effective method to ensure stable combustion for EGR-diluted stoichiometric operation, the use of twin spark ignition (SI) system is examined by modifying both valve diameters of intake and exhaust, and its effect is compared against that of single spark ignition. In addition, the layout of twin spark ignition was also examined for the location of front-rear and intake-exhaust. To get the maximum BTE at high load, 12 V electronic super charger (eSC) was applied. Under the condition of using 12 V eSC, the effect of intake cam duration was identified by increasing from 260 deg to 280 deg. Finally, 48 V eSC was applied with the longer intake camshaft duration of 280 deg. As a result, the maximum BTE of 44% can be achieved for stoichiometric operation with EGR.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference27 articles.

1. Regulations for Emissions from Vehicles and Engines;Environmental Protection Agency,2020

2. Low-Emission Vehicle Regulations & Test Procedures;California Environmental Protection Agency Air Resources Board,2020

3. Directions in Internal Combustion Engine Research;Combust. Flame,2013

4. The New Toyota Inline 4-Cylinder 2.5 L Gasoline Engine,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3