Characterizing the Viscoelastic Properties of Hydrogel Thin Films by Bulge Test

Author:

Yanfei Chen12,Shigang Ai3,Jingda Tang4,Yongmao Pei2,Liqun Tang5,Daining Fang16

Affiliation:

1. College of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China;

2. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China

3. Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044, China

4. State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China

5. College of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China e-mail:

6. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China e-mail:

Abstract

In this work, we carried out bulge test for quantifying the viscoelastic properties of poly (vinyl alcohol) (PVA) thin films with custom-developed apparatus. A viscoelastic bulge deformation (VBD) model based on the elasticity–viscoelasticity correspondence principle and spherical cap equation is established to describe the bulge deformation of polymeric thin films. The VBD model can be used to determine the time-dependent modulus by bulge test for polymeric films. Uniaxial compressive relaxation test and PRONY series fitting method are used to define the constitutive parameters of the VBD equations. We presented two types of VBD models in frequency domain under linear loading and step loading conditions. Through inverse Laplace transformation, the proposed VBD model can effectively predict the bulge deformation of PVA hydrogel thin film. Numerical simulations are also conducted to validate the VBD model under step loading conditions. This work provides a methodology to characterize the viscoelastic properties of polymeric films by bulge test.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3