Creep Tests of Rotating Disks at Elevated Temperature and Comparison With Theory

Author:

Wahl A. M.1,Sankey G. O.1,Manjoine M. J.1,Shoemaker E.1

Affiliation:

1. Westinghouse Research Laboratories, East Pittsburgh, Pa.

Abstract

Abstract A theoretical and experimental program involving methods of calculating creep in rotating disks at elevated temperatures is described. This program consisted primarily of the following: (a) Obtaining forged disks from the same ingot of 12 per cent chrome steel, all disks being forged and heat-treated in the same manner; (b) making spin tests at 1000 F on three of these disks for periods up to about 1000 hr; ( ) making long-time tension-creep tests at 1000 F on many specimens cut out circumferentially from several of the other disks at stresses approximating those of the spin tests; (d) investigating theoretical methods of calculation of creep deformation in such disks; and (e) comparison of spin-test results with those calculated theoretically using average tension-creep data. It was found that available methods of calculating rotating disks based on the Mises criterion gave creep deformations too low compared to the test values, i.e., on the unsafe side for design. Considerably better agreement between test and theoretical results is obtained if the latter is based on the maximum-shear theory. Some discussion is given of the reasons for the better agreement obtained using the latter theory; these are believed to be related in part to the anisotropy of the forged material tested. Further tests on other materials are necessary before general conclusions can be drawn; however, in the absence of test data it is suggested that a conservative course in design for such disks is to apply the maximum-shear theory.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3