Thermal Features of Compliant Foil Bearings—Theory and Experiments

Author:

Salehi Mohsen1,Swanson Erik1,Heshmat Hooshang1

Affiliation:

1. Mohawk Innovative Technology, Inc. Albany, NY 12201

Abstract

The paper presents an analytical and experimental investigation aimed at eliciting the thermal characteristics of air lubricated compliant foil bearings. A Couette Approximation to the energy equation is used in conjunction with the compressible Reynolds equation to obtain a theoretical temperature distribution in the air used as a lubricant. The effect of temperature on the thermal properties of the working fluid is included. In parallel, an experimental program was run on a 100 mm diameter foil bearing operating at speeds up to 30,000 rpm employing cooling air across the bearing. The temperature rise of the cooling air provided an indication of the amount of heat energy conducted across the top foil of the bearing from the hydrodynamic film. The temperatures resulted from some tests are compared with the temperatures predicted by the analysis, and maximum over-prediction of about 19 percent was obtained. This simplified approach provides us with reasonably predicted temperatures. By comparing the theoretical heat dissipation obtained from the analytical predicted temperatures with the amount of heat carried away by the cooling air it was possible to arrive at the relative quantities of heat transferred from the bearing by convection via side leakage and by conduction via the top foil. From these comparisons it was deduced that about an average of 80 percent of the heat energy is carried away by conduction. The transient temperatures of the foil bearing in conducted tests for various speeds and loads are also presented.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3