Affiliation:
1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
2. Solar Turbines, Incorporated, San Diego, CA 92101
Abstract
Experiments and numerical computations are performed to investigate the convective heat transfer characteristics of a gas turbine can combustor under cold flow conditions in a Reynolds number range between 50,000 and 500,000 with a characteristic swirl number of 0.7. It is observed that the flow field in the combustor is characterized by an expanding swirling flow, which impinges on the liner wall close to the inlet of the combustor. The impinging shear layer is responsible for the peak location of heat transfer augmentation. It is observed that as Reynolds number increases from 50,000 to 500,000, the peak heat transfer augmentation ratio (compared with fully developed pipe flow) reduces from 10.5 to 2.75. This is attributed to the reduction in normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.7 with Reynolds number. Additionally, the peak location does not change with Reynolds number since the flow structure in the combustor is also a function of the swirl number. The size of the corner recirculation zone near the combustor liner remains the same for all Reynolds numbers and hence the location of shear layer impingement and peak augmentation does not change.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献