Heat Transfer Characteristics of an Oblique Jet Impingement Configuration in a Passage With Ribbed Surfaces

Author:

Hoefler Florian1,Schueren Simon1,von Wolfersdorf Jens1,Naik Shailendra2

Affiliation:

1. Institute of Aerospace Thermodynamics (ITLR), Universität Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany

2. Alstom Power, Brown Boveri Strasse 7, CH-5401 Baden, Switzerland

Abstract

Heat transfer measurements of a confined impingement cooling configuration with ribs on the target surfaces are presented. The assembly consists of four nonperpendicular walls of which one holds two rows of staggered inclined jets, each impinging on a different adjacent wall. The ribs are aligned with the inclined jet axes, have the same pitch, and are staggered to the impinging jets. The flow exhausts through two staggered rows of holes opposing the impingement wall. The passage geometry is related to a modern gas turbine blade cooling configuration. A transient liquid crystal technique was used to take spatially resolved surface heat transfer measurements for the ground area between the ribs. A comparison with the smooth baseline configuration reveals local differences and a generally reduced heat transfer for the rib-roughened case. Furthermore, lumped heat capacity measurements of the ribs yielded area averaged heat transfer information for the ribs. From the combination of ground and rib heat transfer measurements, it is concluded that the overall performance of the ribbed configuration depends on the Reynolds number. Of the five investigated jet Reynolds numbers from 10,000 to 75,000, only for the highest Re the averaged Nusselt numbers increase slightly compared with the smooth baseline configuration.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

1. Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines;Weigand

2. Recent Developments in Turbine Blade Internal Cooling;Han

3. Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces;Martin;Adv. Heat Transfer

4. Jet Impingement Heat Transfer in Gas Turbine Systems;Han

5. Impingement Heat Transfer: Correlations and Numerical Modeling;Zuckerman;ASME J. Heat Transfer

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3