Modelling and Design of Direct Solar Steam Generating Collector Fields

Author:

Eck M.1,Steinmann W.-D.1

Affiliation:

1. German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

Abstract

The direct steam generation (DSG) is an attractive option regarding the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi megawatt range. According to Price, H., Lu¨pfert, E., Kearney, D., Zarza, E., Cohen, G., Gee, R. Mahoney, R., 2002, “Advances in Parabolic Trough Solar Power Technology,” J. Sol. Energy Eng., 124 and Zarza, E., 2002, DISS Phase II-Final Project Report, EU Project No. JOR3-CT 980277 a 10% reduction of the LEC is expected compared to conventional SEGS like parabolic trough power plants. The European DISS project has proven the feasibility of the DSG process under real solar conditions at pressures up to 100 bar and temperatures up to 400°C in more than 4000 operation hours (Eck, M., Zarza, E., Eickhoff, M., Rheinla¨nder, J., Valenzuela, L., 2003, “Applied Research Concerning the Direct Steam Generation in Parabolic Troughs,” Solar Energy 74, pp. 341–351). In a next step the detailed engineering for a precommercial DSG solar thermal power plant will be performed. This detailed engineering of the collector field requires the consideration of the occurring thermohydraulic phenomena and their influence on the stability of the absorber tubes.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference23 articles.

1. Taitel, Y., and Dukler, A. E., 1976, “A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid-Flow,” AIAA J., 22, pp. 47–55.

2. Ajona, J. I., Herrmann, U., Sperduto, F., and Farinha-Mendes, J., “ARDISS Final Report,” Final Report of the EU project, Contract No. JOU2-CT94-0311.

3. Goebel, O., 1997, “Modelling of Two-Phase Stratified an Annular Flow in Heated Horizontal Tubes,” Convective Flow Boiling Conference, Kloster, Irsee.

4. Rouhani, S. Z., 1969, “Modified Correlations for Void-Fraction and Pressure Drop,” AB Atomenergi Sweden, AE-RTV-841, pp. 1–10.

5. Zarza, E., Ed., 2002, DISS phase II—Final Project Report, EU-Project No. JOR3-CT980277.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3