Affiliation:
1. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115
Abstract
A mechanistic model of the respiratory system is proposed to understand differences in quasistatic pressure-volume (p-V) curves of the inflation process in terms of the alveolar recruitment and the elastic distension of the wall tissues. In the model, a total respiratory system consists of a large number of elements, each of which is a subsystem of a cylindrical chamber fitted with a piston attached to a spring. The alveolar recruitment is simulated by allowing a distribution of the critical pressure at which an element opens; while the wall distension is represented by the piston displacement. Relations are derived between parameters in the error-function p-V model equation and properties of the mechanistic model. The parameters of the model-based p-V equation are determined for clinical data sets of patients with acute respiratory distress syndrome.
Subject
Physiology (medical),Biomedical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献